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Abstract 

A method of calculation of the distribution of charges on the pore surfaces of 
microporous membranes is shown. The membranes are Nuclepore filters 
separating two diluted NaCl water solutions (concentrations c, and c, > c,). The 
method is based on the integration in the steady state of the Nernst-Planck- 
Poisson equations by using Goldman's hypothesis of a linear gradient of electric 
potential. This integration permits us to obtain the volume charge density inside 
the pores as a function of the distance. In order to obtain the surface density of 
charges on the pore walls, the pore shape has to be known. It has been proved by 
us that the pores of our Nuclepore membranes can be described as bent 
revolution parabolas whose parameters can be determined by adjusting them in 
order to fit the experimental porosity data. These membranes have very low 
permselectivities and they are unaffected by the diffusion layers, but the ionic 
permeabilities are smaller if these diffusion layers exist. This effect on the ionic 
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1236 HERNANDEZ ET AL. 

permeabilities can be related with the angle of bending and the ratio between 
mean surface charge densities inside and outside the pores when ci = c,. 

INTRODUCTION 

The use of microporous membranes for the separation of differently 
sized molecules has recently witnessed increased interest. Industrial 
applications involve treatment of food and beverage biological materials 
and waste treatment (I). The utility of the process is limited by the 
inability of the membranes to characterize themselves in relation to the 
sharpness of separation, so the structure-performance studies are of great 
interest (2-6). The presence of charges inside the pores of microporous 
membranes are expected to have some influence upon the transport 
through them, at least when dealing with ionic species (i.e., electrolytic 
solutions). 

Microfiltration and ultra filtration membranes are frequently charac- 
terized by their “molecular weight cut-off,’’ and manufacturers designate 
an upper limit above which less than 10% transport occurs. This 
molecular weight cut-off depends on the molecular configuration of the 
macromolecules, the pore size characteristics of the membrane, and the 
specific solute adsorption onto the membrane materials (2). These 
adsorption phenomena can take place both on the external surface of the 
membrane and inside the pores. The small charge carried by some 
microporous membranes can be of interest even with neutral species. 
Nevertheless, our studies are well below the molecular weight cut-off in 
order to avoid any volume exclusion phenomenon. The transport of 
NaC1-water solutions through Nuclepore membranes with pore radii 
ranging from 0.1-1.0 pm, as given by the manufacturers, takes place with 
only the charge-ions interactions playing a role in modifying the free 
diffusion. This makes it necessary to study these charges inside the pores 
of Nuclepore membranes whose structure was recently studied by us (7). 

Membrane potential is one of the most important physical properties 
of these charge-related membrane processes. Several theories have been 
proposed in order to explain such membrane potential. One of them is 
based on the Donnan phase boundary potentials (8). Another theory is 
based on the ion diffusion potential and the Nernst-Planck-Poisson 
equations (8). A combination of these two theories, i.e., the fixed charge 
membrane theory, which includes the phase boundary potentials (8), has 
been very successful. This membrane potential theory can be improved 
by using surface potentials, i.e., Gouy-Chapman potentials (9-I2), 
instead of phase boundary potentials. 
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CHARGES ON THE PORE WALLS OF MICROPOROUS MEMBRANES 1237 

In this paper the volume charge density inside the pores of a passive 
microporous membrane is studied. A method is explained and applied to 
several Nuclepore membranes (M02, M04, M06, M10, and M20 with pore 
diameters of 0.2,0.4,0.6, 1.0, and 2.0 pm, which are mean values as given 
by the manufacturers) separating two dilute NaC1-water solutions with 
concentrations of c, = 100 X lo-’ mol/cm3 and ci > c,, of constant 
temperature: T = 298.0 k 0.1 K. The Nernst-Planck-Poisson equations 
can be integrated in the steady state by assuming a linear gradient of 
electric potential, according to Goldman’s hypothesis (8). In each 
membrane-solution interface there is a diffusion boundary layer with a 
diffusion potential. As a consequence of interactions of ions and water 
molecules with the solid phase, there is also an electric double layer with 
a surface potential at each interface. 

In order to obtain the surface charge density inside the pores, their 
structure has to be known. Nuclepore membranes are polycarbonate 
films perforated by an array of discrete and nearly parallel pores which 
have been produced by exposure to penetrating radiation followed by 
activated-track etching. Thermoporometric (13) experiments, conduc- 
tivity, and pure solvent permeability (3) experiments and other intrusive 
methods always give greater mean pore radii than those by nonintrusive 
methods like scanning electron microscopy (3, 4, 7). This is because the 
chemical treatment creates widenings inside the pores. The shape of the 
pores of Nuclepore membranes has been experimentally found to be 
symmetric around its longitudinal axis (3,4), but its shape along the axis 
has been assumed to have a constant width (cylindrical pores), so-called 
“spaghetti model” (9, or to be linearly increasing in width along the axis 
(truncated cone pores) (5). It has been proved by us (7) that the mean pore 
can be described as obtained by the revolution of a generating parabola 
around the axis of the pore, with the axis being bent an angle a from the 
surface of the membrane. This is obtained from experimental and 
theoretical data of the porosities and is in accordance with transmission 
microscopy. The parameters of the generating parabola and the angle of 
bending are experimentally adjustable (7). 

THEORY 

Ionic Concentrations and Volume Charge Density 

The assumed potential profile is shown in Fig. 1. Note that in each 
diffusion layer there is a diffusion potential and in each electric double 
layer there is a Gouy-Chapman potential. Across the membrane itself 
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FIG. 1. Profile of electric potential through the membrane system. The membrane potential 
is Aymb and the potential gradient across the membrane is Ayld. The thickness of both the 
diffusion layers is 6, the thickness of the membrane is d, and those of the electrical double 
layers are A. and Ai, respectively. The diffusion potential between the solutions of saline 
concentrations 1 and 2 is ED(1,2) and +, and I& are the Gouy-Chapman potentials. For the 

other symbols see the text. 

there is a linear potential according to Goldman's hypothesis. The 
thicknesses of all elements in the membrane system are also shown in 
Fig. 1. The thicknesses of the two diffusion layers are equal because they 
come from the same inadequate stirring on both sides of the membrane. 
The thickness of each double layer, i.e., the Debye length, depends on the 
concentration of the solution in contact with the membrane. 

c, and ci denote the concentrations of the bulk solutions (0 for the 
diluted solution and i for the concentrated one). The concentrations at 
the boundaries of the double layers are to, c:, c,', and tfi The values of 
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saline concentrations at the double layer-membrane interfaces (i.e., ci 
and cl) are obtained from c, and ci if we forget the Gouy-Chapman 
potentials in the electric double layers. So ci and c; are the concentrations 
in contact with the membrane if only diffusion acts in the diffusion 
layers. This is why they are saline concentrations despite there being a 
separation of ions in the electric double layers; in fact, there is an 
accumulation of cations on the surfaces of the negatively charged 
membrane. Therefore the actual concentrations are ionic, [cj]l and [cj]i ,  
with j = + for cations and j = - for anions. The volume charge densities 
at both sides of the membrane are ijQ and ij+ The ionic concentrations in 
the membrane, [cj],  and the volume charge density inside the pores, ii, are 
space-dependent; i.e., they depend upon the x-coordinate whose origin is 
the membrane-diluted solution contact. 

The ionic concentrations [cj](x) and the volume charge density ii(x) 
have to be calculated from the other parameters. 

The electroneutrality conditions for the membrane boundaries and a 
1:l solute are 

with p = 0 for x = 0 and p = i for x = d. 
Donnan balance condition (10) leads to 

On the other hand, the 

Using Eqs. (1) and (21, we obtain 

[c-1; = CI, + qp/2 (4) 

which are valid for iip small enough to have iii + 4(cI,>’ = 4(cI,)*. 
Equations (3) and (4) can be joined in 

[ C j I I ,  = CI, - ZjfjP/2 ( 5 )  

where zj is the valence of the j ion (z+ = 1, z- = -1). 
The concentrations to, ci, c:, and ti are related to c, and ci by 
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HERNANDEZ ET AL. 

where J is the saline flux and Dd is the saline diffusion coefficient in the 
diffusion layers. In Eqs. (8) and (9) we have S - A. = 6 - Ai = S (14). 

The permeability of the j ion in the membrane is defined (8) as 

4 is the j-ionic diffusion coefficient in the membrane. The j-ionic 
permeability in the membrane system is 

Pj = Dj/(d + 26) (11) 

where d + 26 is the Dj thickness. Consequently 

q ( d  + 26) 
= Did 

where y is a constant to be determined below. In writing Eq. (13) it has 
been assumed that the diffusion and electric double layers do not 
introduce any new selectivity to the membrane. 

In the steady state the scalar Nernst-Planck-Poisson equations with 
Goldman’s hypothesis are (15) 

where Ay/ is the electric potential across the membrane. Integration of 
Eq. (14) leads to 

where p is a constant. Using Eq. (5) as boundary conditions for Eq. (15), 
we get 
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and using Eq. (10) and J = PSM(ci - co), 

From this equation we obtain 

(18) 
PSM (ci -. co)  RT +-  
Pj zj FAY 

where E = xld. That is to say: 

[ c + l ( ~ ) =  [ c ~ - ~ - - - - - ( c i - c 0 ) ] e x p ( - ~ ~ )  fi P S M  RT 
p +  FA,,, 

+ __ - ( C i  - c,) (19) 
p S M  RT 
P ,  FAY 

[c-](f)  = c; + -2 ' + -- 'SM RT ( c i -  c,) [ 2 P- FA,,, 

RT 
(Ci - co) 

- P S M -  
P -  FAY 

From Eq. (17) we obtain 

RT 1 1 1 
F P ,  P -  c , + c i  

+ i i o -  C i  

AY = -pSM(ci - co){ [T - T] ~ 
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1242 HERNANDEZ ET AL. 

where we have made the approximation 

If we call the expression given in Eq. (21) A@, but with 4 instead of e, we 
have 

then using Eqs. (12), (17), and (22) we calculate y as 

then from Eqs. (6), (7), (12), (21), and (23) we can calculate c. from P,, c,, ci, 
ii,, rl;, PsM, and W D d .  

The electroneutrality condition requires that, inside the membrane, 

ii(3 = Ic-l(T) - lC+l(T) 

From Eqs. (19), (20), and (24) it follows that 

Then we can calculate ij(F) from P+, P-, c,, c;, ii,, ij;, PSM, and S/D+ Because 
we have yet to calculated P+ and P-, c i  and ci  can be calculated from Eqs. 
(6) and (7) and Ay from Eq. (21). 

We wish to emphasize the following points: 

(a) The ratio 6/Dd was previously calculated (16) 
(b) The permeability of the membrane system PSM was obtained in one 
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CHARGES ON THE PORE WALLS OF MICROPOROUS MEMBRANES 1243 

experiment from measurements of saline fluxes (PSM = J/(c ,  - c,)) 
(16) 

(c) The ionic permeabilities P- and P ,  of the membrane system were 
obtained by combining the measurements of ion fluxes and 
membrane potentials (25) 

(d) The volume densities of charges in the membrane interphases, fi, 
and fji, can be calculated for each c, and ci, taking into account the 
diffusion boundary layers from the respective values of the surface 
charge densities 6, and isi (24) 

In Table 1 we show the values of 6 / D ,  PSM, P-, and P+ for the 
microporous Nuclepore membranes M02, M04, M06, M10, and M20 
bathed by two NaCl solutions stirred at 50 rpm at 298.0 f 0.1 K. 

Pore Shape and Surface Charge Density 

The surface charge density, 6(Z), is 

VP 6(f) = -((X)ii(X) 
S,  

where V, and S, are the volume and surface of the mean pore, 
respectively. It is evident that in general &ISp depend upon 2. For 
cylindrical pores we have 

VJS, = r / 2  (27) 

where r is the mean pore radius. 
We proved (7) that the mean pore of a Nuclepore membrane, at least 

TABLE 1 
Permeability Parameters of the Nuclepore Filters Studied 

Membranes (s/cm) (cm/s) (cmls) (cmls) 
pSM x 104 P- x 104 P+ x 104 

M02 255 k 20 4.5 +_ 0.3 6.5 f 0.3 3.4 k 0.1 
M04 255 f 20 4.0 k 0.3 5.8 f 0.3 3.0 k 0.1 
M06 255 k 20 4.8 k 0.2 6.5 +_ 0.3 3.8 k 0.1 

3.8 k 0.1 M10 255 k 20 4.4 k 0.2 
M20 255 k 20 5.9 k 0.3 8.3 k 0.4 4.5 * 0.2 

5.3 k 0.2 
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9 244 HERNANDEZ ET AL. 

for M02-M20, can be described as bent at an angle a between it and the 
membrane surface and with an internal maximal radius I; at the center of 
the membrane. A mean pore is shown in Fig. 2. Obviously a and ri are 
different for each Nuclepore filter. In Table 2 are shown a, I, and ri. The 
mean external radius of the pores, r, has been measured from SEM 
(scanning electron microscopy). 

If for each x we substitute the revolution paraboloid by a tangential 
cylinder, we have 

where r(Z) is the equation of the generating bent parabola, which is 

2 
ri - r + 4 (”) + I (29)  

I ( X )  = - 4 (dlsin a)’ (&) dls ina  s i n a  

Therefore O(Z) can be obtained from Eqs. (25), (26), (28), and (29). The 
mean surface density inside the membrane is 

\ 
r s i n a  

c / s i n  a 

90-a 

RG. 2. A mean pore bent an angle a with respect to the membrane surface. The pore radii 
are very much smaller and the thickness of the membrane, d, is very much greater than 

drawn. Therefore, the generating parabola is much flatter than in the drawing. 
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TABLE 2 
Mean Structural Parameters of the Nuclepore Filters Studied 

a 
Membranes (degrees) r (Ilm) ri (PI 

M02 25 f 1 0.060 f 0.001 0.14 f 0.01 
M04 32 +_ 1 0.190 +_ 0.003 0.30 k 0.02 
M06 24k 1 0.217 k 0.004 0.41 k 0.02 
M10 24 f 1 0.411 f 0.008 0.95 -I 0.04 
M20 1 7 +  1 0.780 f 0.009 0.97 k 0.04 

but using Eqs. (26) and (28): 

J r(Z)dZ 
0 

Therefore, from Eqs. (25), (29), and (31) we obtain 

x (W,P,  + W,P, + W3P3 + W4P4 + W,P,) 

where 
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1246 HERNANDEZ ET AL. 

p - -  4 I - - + - - - + -  12 24 2)  -- 2 
I -  ec G ( G G2 G 3  

p - -  I - - + - - -  3 6  + -  
G G2 G",) G64 
G i2) i3 

2 -  eG G ( 
p , = -  I - - + -  2 -- 

eG G ( 

ec 1 
' - G  G 

p 

-G 

e-' 1 
Q s = - + + z  

G = FAy/RT 

Wl = 16(rj - T)' 

W2 = -32(rj - r)2 

W3 = S[2(rj  - r)' - (ri - r ) r ] / ( y r  - z r i ) 2  5 
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W4 = 8(ri  - r)r - r  - - r i  2 /(‘Q ’6 ) 

Therefore we can calculate (a) for each c, and ci by using Eq. (32). Note 
that the angle of bending of a mean pore is not explicitly needed in order 
to calculate (6). Nevertheless, the mean internal radius, ri, is character- 
istic of a bent pore; i.e., if we assume a nonbent pore, we would obtain 
another value for ri. The volume charge densities fi0 and fii can be 
calculated from 6, and Ej (14) by using Eqs. (26) and (27). 

RESULTS AND DISCUSSION 

In Table 3 the anionic and cationic permeabilities through the M02- 
M20 membranes are shown. The permselectivities (i.e., the ratio between 
anionic and cationic permeabilities) that we have assumed to be equal for 
each membrane and the corresponding membrane system are also 
shown. Note that the permselectivities are very low and very close to each 
other. The values of y are also shown in Table 3. The value of y gives an 
idea of the decrease of ionic fluxes due to the presence of diffusion layers. 
They are very close to but greater than 1; i.e., it would be desirable to 
avoid diffusion layers but the increase ionic fluxes obtained would be 
very small. 

In Fig. 3 the electric potential through the membrane, Ay, is plotted 
versus the relative saline concentration, n, = ci/c,. These potentials are 
not linear with In ci/c,, which was the case with the membrane potential, 

TABLE 3 
Calculated Ionic Permeabilities, Permselectivities, and Relations between Ionic 

Permeabilities of the Membranes and of the Membrane Systems, y 

Pe-selectivity, - y, - 
P- x lo4 P, x 104 P-IP, = P J P ,  PJP- = PJP, , .  

Membranes (cm/s) (cmls) (adimensional) (adimensional) 
~~ ~~~ 

M02 8.33 f 0.02 4.36 f 0.01 1.91 k 0.01 1.28 f 0.01 
7.23 k 0.02 3.74 t 0.01 1.93 f 0.01 1.25 f 0.01 M04 
8.52 2 0.02 4.98 k 0.01 1.71 f 0.01 1.31 k 0.01 M06 
6.76 k 0.02 4.85 k 0.01 1.39 f 0.01 1.28 f 0.01 M10 

11.88 k 0.02 6.44 f 0.02 1.85 f 0.01 1.43 k 0.01 M20 
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a 

c / c  (ADIMENSIO N A L )  
I 0  

FIG. 3. The electric potential through the membrane itself versus the relative saline 
concentration c , k ,  for the Nuclepore filters studied. 

Aymb (19 ,  at least for c, = 100 X mol/cm3, and 100 X mol/ 
cm3 <ci  < 1000 x 

In Fig. 4 we see the natural logarithm of the anionic permeability of the 
membrane itself, In p- ,  as a function of the anionic permeability of the 
membrane system, P-. From this figure and the adjusted curve we 
conclude that, for our membranes, solutions, stirring speed, and temper- 
ature (actually these two last parameters are not relevant in determining 
the basic shape of the curve), F- increases with P as an exponential 
(F- = (2.42 +_ 0.29) exp [(0.191 f 0.017)P-]). 

In Figs. 5 and 6 we show the surface charge density inside a mean pore 
in absolute value -6 as a function of the adimensionalized distance, Z, 
for the membranes M02 and M20, respectively. Note that the charges are 
low but there is an accumulation on the walls of the center of the pores. 
This accumulation is in general higher for bent pores than for nonbent 
ones. 

In Fig. 7 the mean surface charge density in absolute value -(5) is 
plotted versus the relative saline concentration n, = c,/c,. The curves cross 
each other for some values of n, Nevertheless, the significant surface 
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2.4 

2.2 

2.0 

, -1 1.8 
z J 

1.6 

1.4 

1.2 

1.0 I 1 1 f 

, 5.5 6 6.5 7 7,s 8 8-5  

P- ,104 (dS) 

FIG. 4. The natural logarithm of the anionic permeability of the membrane itself, In p-, 
versus the anionic permgability of the membrane system, P-. The fitted curve is 

In P- = (0.885 5 0.120) + (0.191 f 0.017)P-. 

0 0.20 0.40 0.60 0 - 8 0  1 

= X / d  (ADIMENSIONAL)  

FIG. 5. Surface charge density inside a mean pore in absolute value as a function of the 
adimensionalized distance, -6(:), for the membrane M02. 
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400. 

350 - 

N- 300- 

Z 250- 
Ib 

1 200- 

150- 

100 

\ V 

- 

< = x / d  (ADIMENSIONAL) 

FIG. 6. Surface charge density inside a mean pore in absolute value as a function of the 
adimensionalized distance, -G(i), for the membrane M20. 

charge densities (14) are those for ci = c,, so in Table 4 the mean surface 
charge density inside the pores, (6) (from extrapolation in Fig. 7), and on 
the external surfaces, ex ( 1 4 ,  when nc+l are shown with the ratio between 
them. This ratio gives an idea about the degree of overcharge inside the 
pores compared with the external surfaces. 

In Fig.8 the ratio PJP-  is plotted as a function of (6)/6s when nc+l. 
The adjusted curve is a parabola ( y  = (1.827 0.190) - (0.457 * 0.219)~ 
+ (0.091 k 0.06l)x’ with y = PJP-  and x = limnc+, ((6)bs)). Note that 
when ((6)/5~)~~+, increases, PJP- decreases; i.e.,when the overcharge of 
the pores is great, the importance of the diffusion layers as barriers to 
ionic transport is small. This is foreseeable because then the membrane is 
the most important barrier in the membrane system. 

In Fig. 9, y = PJP- is shown as a function of the bending angle a. The 
adjusted curve is y = (2.140 k 0.378) - (0.058 k 0.031)~ + (0.0009 f 
0.0006)a2. Note that for bending angles greater than approximately 32”, 
the sign of the slope of the curve changes; i.e., the importance of the 
diffusion layers as barriers to ionic transport increases with a but only for 
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FIG. 7. The mean surface charge density in absolute value, -(3, inside the pores of the 
Nuclepore filters studied as a function of the relative saline concentration ci/co. 

TABLE 4 
Calculated Mean Surface Charge Densities on the Pore Walls, Surface Charge Densities on 

the External Surfaces of the Membranes, and the Ratio (6)/r?, (ci = c,,) 

M02 8.05 f 0.01 4.03 f 0.01 2.998 f 0.01 
M04 10.68 f 0.02 4.28 f 0.01 2.495 5 0.01 
M06 5.95 k 0.01 3.61 k 0.01 1.650 f 0.01 
MI0 6.47 k 0.01 3.1 1 k 0.01 2.080 f 0.01 
M20 4.41 f 0.01 3.97 k 0.01 1.130 k 0.01 
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I 1 I I I I I 1 
1.2 1.4 1.6 1.8 2.0 2,2 2.4 2,6 

[<6>/6,]n + 1 ( A D  I MENSION AL) 

- 
FIG. 8. The ratio PJP- as a function of (a/& when ci = c, (i.e., when n, = ci/co+l). If we 
call .x = limnc,, ((36,) and y = PJP-, the fitted curve is y = (1.827 ? 0.190) - 

(0.457 ? 0 . 2 1 9 ) ~  + (0.091 f 0.061)$. 

very bent pores (a small), while for slightly bent pores (a large) it 
decreases with a. This is because pores with a mean bending angle of 
a z 0” or a 2: 90” have a very small membrane barrier. 
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